Acceleration Problems

1. A flowerpot falls off a second story windowsill. The flowerpot starts from rest and hits the sidewalk 1.5 s later with a velocity of $14.7 \mathrm{~m} / \mathrm{s}$. Find the average acceleration of the flowerpot.
2. Natalie accelerates her skateboard along a straight path from $0 \mathrm{~m} / \mathrm{s}$ to $4.0 \mathrm{~m} / \mathrm{s}$ in 2.5 s . Find her average acceleration.
3. A turtle swimming in a straight line toward shore has a speed of $0.50 \mathrm{~m} / \mathrm{s}$. After 4.0 s , its speed is $0.80 \mathrm{~m} / \mathrm{s}$. What is the turtle's average acceleration?
4. Find the average acceleration of northbound subway train that slows down from $12 \mathrm{~m} / \mathrm{s}$ to $9.6 \mathrm{~m} / \mathrm{s}$ in 0.8 s .
5. Marisa's car accelerates at an average rate of $2.6 \mathrm{~m} / \mathrm{s}^{2}$. Calculate how long it takes her car to accelerate from $24.6 \mathrm{~m} / \mathrm{s}$ to $26.8 \mathrm{~m} / \mathrm{s}$.
6. A cyclist travels at a constant velocity of $2.3 \mathrm{~m} / \mathrm{s}$ westward and continues at this velocity for 60 seconds. Then, the cyclist speeds up to a velocity of $4.5 \mathrm{~m} / \mathrm{s}$ and stays at this velocity for another 60 seconds. Calculate the cyclist's acceleration.

Accelepation Problems Key

1. A flowerpot falls off a second story windowsill. The flowerpot starts from rest and hits the sidewalk 1.5 s later with a velocity of $14.7 \mathrm{~m} / \mathrm{s}$. Find the average acceleration of the flowerpot. $9.8 \mathrm{~m} / \mathrm{s}^{2}$
2. Natalie accelerates her skateboard along a straight path from $0 \mathrm{~m} / \mathrm{s}$ to $4.0 \mathrm{~m} / \mathrm{s}$ in 2.5 s . Find her average acceleration. $1.6 \mathrm{~m} / \mathrm{s}^{2}$
3. A turtle swimming in a straight line toward shore has a speed of $0.50 \mathrm{~m} / \mathrm{s}$. After 4.0 s , its speed is $0.80 \mathrm{~m} / \mathrm{s}$. What is the turtle's average acceleration? $0.08 \mathrm{~m} / \mathrm{s}^{2}$
4. Find the average acceleration of northbound subway train that slows down from $12 \mathrm{~m} / \mathrm{s}$ to $9.6 \mathrm{~m} / \mathrm{s}$ in $0.8 \mathrm{~s} .-3 \mathrm{~m} / \mathrm{s}^{2}$
5. Marisa's car accelerates at an average rate of $2.6 \mathrm{~m} / \mathrm{s}^{2}$. Calculate how long it takes her car to accelerate from $24.6 \mathrm{~m} / \mathrm{s}$ to $26.8 \mathrm{~m} / \mathrm{s} .0 .8$ seconds
6. A cyclist travels at a constant velocity of $2.3 \mathrm{~m} / \mathrm{s}$ westward and continues at this velocity for 60 seconds. Then, the cyclist speeds up to a velocity of $4.5 \mathrm{~m} / \mathrm{s}$ and stays at this velocity for another 60 seconds. Calculate the cyclist's acceleration. $0.02 \mathrm{~m} / \mathrm{s}^{2}$
